Effect of chemistry-aerosol-climate coupling on predictions of future climate and future levels of tropospheric ozone and aerosols
نویسندگان
چکیده
[1] We explore the extent to which chemistry-aerosol-climate coupling influences predictions of future ozone and aerosols as well as future climate using the Goddard Institute for Space Studies (GISS) general circulation model II’ with on-line simulation of tropospheric ozone-NOx-hydrocarbon chemistry and sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary organic carbon aerosols. Based on IPCC scenario A2, year 2100 ozone, aerosols, and climate simulated with full chemistry-aerosol-climate coupling are compared with those simulated from a stepwise approach. In the stepwise method year 2100 ozone and aerosols are first simulated using present-day climate and year 2100 emissions (denoted as simulation CHEM2100sw) and year 2100 climate is then predicted using offline monthly fields of O3 and aerosols from CHEM2100sw (denoted as simulation CLIM2100sw). The fully coupled chemistry-aerosol-climate simulation predicts a 15% lower global burden of O3 for year 2100 than the simulation CHEM2100sw which does not account for future changes in climate. Relative to CHEM2100sw, year 2100 column burdens of all aerosols in the fully coupled simulation exhibit reductions of 10–20 mg m 2 in DJF and up to 10 mg m 2 in JJA in mid to high latitudes in the Northern Hemisphere, reductions of up to 20 mg m 2 over the eastern United States, northeastern China, and Europe in DJF, and increases of 30–50 mg m 2 over populated and biomass burning areas in JJA. As a result, relative to year 2100 climate simulated from CLIM2100sw, full chemistry-aerosol-climate coupling leads to a stronger net global warming by greenhouse gases, tropospheric ozone and aerosols in year 2100, with a global and annual mean surface air temperature higher by 0.42 K. For simulation of year 2100 aerosols, we conclude that it is important to consider the positive feedback between future aerosol direct radiative forcing and future aerosol concentrations; increased aerosol concentrations lead to reductions in convection and precipitation (or wet deposition of aerosols), further increasing lower tropospheric aerosol concentrations.
منابع مشابه
Role of climate change in global predictions of future tropospheric ozone and aerosols
[1] A unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies general circulation model II0 is applied to simulate an equilibrium CO2forced climate in the year 2100 to examine the effects of climate change on global distributions of tropospheric ozone and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and...
متن کاملPast, present, and future concentrations of tropospheric ozone and aerosols: Methodology, ozone evaluation, and sensitivity to aerosol wet removal
[1] Tropospheric ozone and aerosols are radiatively important trace species, whose concentrations have increased dramatically since preindustrial times and are projected to continue to change in the future. The evolution of ozone and aerosol concentrations from 1860 to 2100 is simulated on the basis of estimated historical emissions and four different future emission scenarios (Intergovernmenta...
متن کاملNitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone
Nitrate aerosols are expected to become more important in the future atmosphere due to the expected increase in nitrate precursor emissions and the decline of ammoniumsulphate aerosols in wide regions of this planet. The GISS climate model is used in this study, including atmospheric gasand aerosol phase chemistry to investigate current and future (2030, following the SRES A1B emission scenario...
متن کاملAerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6
The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozonedepleting hal...
متن کاملGlobal radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model
[1] Global simulations of sea salt and mineral dust aerosols are integrated into a previously developed unified general circulation model (GCM), the Goddard Institute for Space Studies (GISS) GCM II0, that simulates coupled tropospheric ozone-NOxhydrocarbon chemistry and sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary organic carbon aerosols. The fully coupled ga...
متن کامل